Zonotopes, toric arrangements, and generalized Tutte polynomials

نویسنده

  • Luca Moci
چکیده

We introduce a multiplicity Tutte polynomial M(x, y), which generalizes the ordinary one and has applications to zonotopes and toric arrangements. We prove that M(x, y) satisfies a deletion-restriction recurrence and has positive coefficients. The characteristic polynomial and the Poincaré polynomial of a toric arrangement are shown to be specializations of the associated polynomial M(x, y), likewise the corresponding polynomials for a hyperplane arrangement are specializations of the ordinary Tutte polynomial. Furthermore, M(1, y) is the Hilbert series of the related discrete Dahmen-Micchelli space, while M(x, 1) computes the volume and the number of integral points of the associated zonotope. Résumé. On introduit un polynôme de Tutte avec multiplicité M(x, y), qui généralise le polynôme de Tutte ordinaire et a des applications aux zonotopes et aux arrangements toriques. Nous prouvons que M(x, y) satisfait une récurrence de “deletion-restriction” et a des coefficients positifs. Le polynôme caractéristique et le polynôme de Poincaré d’un arrangement torique sont des spécialisations du polynôme associé M(x, y), de même que les polynômes correspondants pour un arrangement d’hyperplans sont des spécialisations du polynôme de Tutte ordinaire. En outre, M(1, y) est la série de Hilbert de l’espace discret de Dahmen-Micchelli associé, et M(x, 1) calcule le volume et le nombre de points entiers du zonotope associé.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Tutte Polynomial for Toric Arrangements

We introduce a multiplicity Tutte polynomial M(x, y), with applications to zonotopes and toric arrangements. We prove that M(x, y) satisfies a deletion-restriction recursion and has positive coefficients. The characteristic polynomial and the Poincaré polynomial of a toric arrangement are shown to be specializations of the associated polynomial M(x, y), likewise the corresponding polynomials fo...

متن کامل

Tutte polynomials of hyperplane arrangements and the finite field method

The Tutte polynomial is a fundamental invariant associated to a graph, matroid, vector arrangement, or hyperplane arrangement, which answers a wide variety of questions about its underlying object. This short survey focuses on some of the most important results on Tutte polynomials of hyperplane arrangements. We show that many enumerative, algebraic, geometric, and topological invariants of a h...

متن کامل

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

Chromatic and tension polynomials of graphs

Abstract. This is the first one of a series of papers on association of orientations, lattice polytopes, and abelian group arrangements to graphs. The purpose is to interpret the integral and modular tension polynomials of graphs at zero and negative integers. The whole exposition is put under the framework of subgroup arrangements and the application of Ehrhart polynomials. Such viewpoint lead...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010